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What is quantum turbulence?

Quantum turbulence(QT) basically means

 Turbulence in quantum fluids .

The main stages of QT are

•  Superfluid helium (since 1950’s)

•  Atomic Bose-Einstein condensates(BECs) (since 1995)

1. Introduction 
�



Message of my talk �

By studying quantum turbulence(QT) in cold 
atoms, we can attack the problem by the modern 
point of view.

Turbulence is one of the most traditional 
unresolved problems in physics.  �

Three kinds of QT
(1)   QT of quantized vortices
(2)   QT of spins
(3)   QT of waves �
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Quantized vortices �

Spins �

Waves �



Physics of scalar BEC at 0K is described by the 
macroscopic wave function (order parameter). 
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Ψ r, t( ) = n r, t( ) exp iθ r, t( )( )
            : Density of the Bose condensate

                             : Superfluid velocity

In a weakly interacting BEC,             obeys the 
Gross-Pitaevskii (GP) equation.               
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A quantized vortex is a vortex of superflow in a BEC.���
Any rotational motion in superfluid is sustained by 
quantized vortices.

(i) The circulation is quantized.

A vortex with n≧2 is unstable.

(ii) Free from the decay mechanism of the viscous diffusion of the vorticity. 
Every vortex has the same circulation.

The vortex is stable once it is nucleated. 

I
vs · ds = n (n = 0, 1, 2, · · · )

 = h/m

A quantized  vortex is definite 
and well-defined!! �



Models available for simulation of QT

Vortex filament model  ��Biot-Savart law

A vortex makes the superflow of the Biot-Savart law, and moves with 
this local flow. 

vs r( ) =
κ
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s − r( ) × d s
s − r 3∫
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Gross-Pitaevskii (GP) model for the macroscopic wave function 

�   

€ 

i!∂Ψ(r,t)
∂t

= −
!2∇2

2m
+Vext (r) + gΨ(r,t) 2

& 

' 
( 

) 

* 
+ Ψ(r, t)

Ψ(r ) = n0 (r)e
iθ( r )



Vortex tangle in Quantum Turbulence.

Numerical simulation by the 
Gross-Pitaevskii model.

The blue lines show the thin 
cores of quantized vortices.

Vortices are disordered 
spatially and temporally.

So are superflow created by 
the vortices.                         
à Superfluid turbulence



Classical Turbulence (CT) vs. Quantum Turbulence (QT)

Classical turbulence Quantum turbulence

・The vortices are unstable. Not easy 
to identify each vortex.

・The circulation differs from one to 
another, not conserved.

・The quantized vortices are 
stable topological defects.                            
・Every vortex has exactly the 
same circulation.                ������
・Circulation is conserved.

Motion of 
vortex 
cores

QT may be easier to 
understand than CT, 
because each element of 
turbulence is well defined.



What is turbulence? �
The definition is not unique.
The definition depends on the scientist and the textbook. �

Necessary condition
The velocity field is disordered and unpredictable. �

Sufficient condition
The disordered physical variables obey some reproducible 
statistical law.�



The Kolmogorov -5/3 spectrum

Energy-
containing 
range

Inertial 
range

Energy-dissipative 
range

Energy spectrum of turbulence 

Kolmogorov law

Energy spectrum of the velocity field

�

Energy-containing range
The energy is injected into the system at                        . 

Inertial range
Dissipation does not work. The nonlinear 
interaction transfers the energy from low k 
region to high k region.

Kolmogorov law (K41) : E(k)=Cε2/3 k -5/3

Energy-dissipative range

The energy is dissipated with the rate ε at the 
Kolmogorov wave number  kc = (ε/ν3 )1/4. 

E = 1
2
v(r)∫

2
dr = E(k)dk∫

Disordered velocity field v(r)

k ⇠ k0 ⇠ 1/L



Vortex lattice Quantum turbulence
Superfluid He

Atomic BEC

There are two main cooperative phenomena of 
quantized vortices;  Vortex lattice under rotation 
and Quantum turbulence. 

Few works, but 
recently active

3. 

2.  Quantum turbulence in atomic BECs
2-1. QT in single-component BEC
�



Some methods of how to create QT in a trapped BEC. 

•  Phase printing: N. G. Berloff, B. V. Svistunov, PRA66, 
013603(2002)

•  Manipulating the trapping potential: M. Kobayashi, M. 
Tsubota, PRA76, 045603(2007)

•  Stirring the condensate: A. J. Allen et al., PRA89, 
023602(2014)  other several works



QT in a trapped BEC

1. Trap the BEC in a 
weakly elliptic potential.

€ 

U x( ) =
mω 2

2
1−ε1( ) 1−ε2( )x 2 + 1+ ε1( ) 1−ε2( )y 2 + 1+ ε2( )z2[ ]

2. Rotate the system first 
around the x-axis,  next 
around the z-axis.

x

y

z

€ 

€ 

Ω t( ) = Ωx, ΩzsinΩxt,Ωz cosΩxt( )

M. Kobayashi and M. Tsubota, Phys. Rev. A76, 045603 (2007)

Making QT by combining two rotations



Actually this idea has been already used in CT. ���
 S. Goto, N. Ishii, S. Kida, and M. Nishioka, Phys. Fluids 19, 061705 (2007) 

Rotation 
around 
one axis

Rotation 
around 
two axes



Condensate density            Quantized vortices

Two precessions (ωx×ωz)

We confirmed a scaling law of the energy 
spectrum similar to the Kolmogorov -5/3 law.

M. Kobayashi and MT, Phys. Rev. A76, 045603 (2007)

€ 

n ≈1.78 ± 0.194

QT made by two precessions in a trapped BEC

Simulation of the Gross-Pitaevskii 
model�



 Making 3D QT by exciting a trapped BEC. 

E.A.L.Henn et al., PRL103, 045301(2009)

Coupled large amplitude oscillation



QT is realized experimentally. �

[1] E. A. L. Henn et al. , Phys. Rev. Lett. 103, 045301 (2009).
[2] K. E. Wilson et al., Annu. Rev. Cold At. Mol. 1, 261 (2013).
[3] Woo Jin Kwon et al., Phys. Rev. A 90, 063627 (2014). �

3D � 2D �



：intracomponent interaction 

：intercomponent interaction 

The mixture is stable. 

BEC１ 
BEC２ 

The large relative velocity should make it unstable.

However,

2-2. QT in two-component BECs 

V. I. Yukalov and E. P. Yukalova, Laser Phys. Lett. 1, 50 (2004).

C. Hamner et al., Phys. Rev. Lett. 106, 065302(2011).



3D 2-component QT  

Flow direction 

Solitons 

→ Vortex loops 

→ QT

,,

H. Takeuchi, S. Ishino, MT, 　　　　　
PRL105, 205301(2010)
S. Ishino, MT, H. Takeuchi,   　　　　
PRA83, 063602(2011)
�



Flow direction 

The unstable mode is 
amplified to lead to the 
disk-shaped low density 
regions.

Scenario to turbulence (1) 
,,

Isosurface of



Vortex rings are 
nucleated inside the low 
density regions.

,,

Vortex core of  
component 1 

Scenario to turbulence (2) 

Flow direction 

Isosurface of



The vortices expand and 
grow.

,,

Scenario to turbulence (3) 

Flow direction 
Vortex core of  
component 1 

Isosurface of



The vortices expand to 
reconnect with other 
vortices.

,,

Scenario to turbulence (4) 

Flow direction 
Vortex core of  
component 1 

Isosurface of



Eventually the vortices 
become tangled.

,,

Scenario to turbulence (5) 

Flow direction 
Vortex core of  
component 1 

Isosurface of



momentum exchange
t

J’� L

Scenario to turbulence  

Expansion of a ring means “phase slippage”.

0                 12.2              12.8             13.3             13.8               26.0                            



momentum exchange
t

J’� L

The “mutual friction” between two 
condensates exchange momentum 

between them to reduce their relative 
motion. 

Scenario to turbulence 



Counterflow is realized in 87Rb. C. Hamner et al., Phys. Rev. Lett. 
106, 065302(2011).

ARP 

Magnetic gradient 

|2, 2>  |1, 1>  

|2, 2>  

|2, 2> +  |1, 1>  

70 ms 

80 ms 

95 ms 

|2, 2>  

|1, 1>  

The modulation instability due 
to counterflow is observed!



S = 1 
m = 1   ψ1  

m = 0  ψ0  

	


m = -1  ψ-1  

	


Spin-1 spinor Bose-Einstein 
condensate 
23Na, 87Rb, etc. 

2-3. Spin turbulence in spinor BECs ���
　　　���



Spin turbulence(ST) in spinor BECs

How to characterize ST?

What is the order parameter of ST?

1.  Energy spectrum of ST 
K. Fujimoto, MT: PRA85, 033642(2012), 

PRA85, 053641(2012)

2. Analogy with spin glass
MT, Y. Aoki, K. Fujimoto: PRA88, 061601(R)

(2013)
Motion of the spin density vectors

Spins are disordered spatially and 
temporally.  �



Spin-1 spinor Gross-Pitaevskii equation
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Here we confine ourselves to the case of the ferromagnetic interaction c1< 0.



The counterflow makes 
the system unstable 
towards spin turbulence.

m=1         m= -1 

Counterflow between m=±1 
components 

1.  Energy spectrum of ST 
K. Fujimoto, MT: PRA85, 033642(2012), PRA85, 053641(2012)

Time-development of the spin density vector s  

Spin turbulence (ST)

€ 

si = ψm
* Si( )mn

m,n=−1

1

∑ ψn



�

Spectrum of the spin-dependent interaction energy in the 
turbulent state

This power law is understood through the dimensional scaling 
analysis of the equation of the motion of s.  
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ξs: spin coherence length



Dimensional Scaling analysis of obtaining the -7/3 law (1)
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The Kolmogorov -5/3 law is obtained from the analysis of the Navie-Stokes(NS) equation.

T. Watanabe et al., PRE55, 5575(1997).

In a uniform system, we can assume ▽n is negligible 
and  v is small.

The Fourie component of     obeys
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K. Kudo and Y. Kawaguchi,   PRA84, 043607(2011)

GP equations à Equation of spin �



We request that the energy flux 
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We obtained a novel -7/3 power law spectrum in ST. �

Dimensional Scaling analysis of obtaining the -7/3 law (2)



�

Spectrum of the spin-dependent interaction energy in the 
turbulent state

This power law is understood through the dimensional scaling 
analysis of the equation of the motion of s.  
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Early stage of ST Late stage of ST after the -7/3 law appeared

In the late stage, spins are spatially disordered but 
temporally frozen.
ーーー＞�Analogy of Spin glass!? 

Counterflow instability in a uniform system

2. Analogy with spin glass
MT, Y. Aoki, K. Fujimoto: PRA88, 061601(R)(2013)



x

t

x

t

x

t
Ferro Para Spin Glass

Such an order parameter was introduced   
in the field of spin glass.

How to characterize the frozen spins? (1)

D. Sherrington and S. Karkpatrick, PRL35, 1972 (1975) �



For the spin variable               in a lattice system 

Defining two order parameters€ 
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Time average Spatial average

x

t

D. Sherrington and S. Karkpatrick, PRL35, 1972 (1975)�
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Magnetization � Spin glass order parameter �

How to characterize the frozen spins? (2)



Defining the unit vector                                           in order to focus 
on the spin direction.       

€ 

ˆ s r,t( ) = s r, t( ) /s r,t( )

Spatial average:

€ 

ˆ s r,t( )[ ] =
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ˆ s r,t( ) dr
A∫

Time average during [t, t+T]:
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∫

Our time-dependent order parameter:

€ 

q t( ) = ˆ s r, t( ) T

2[ ]

A: area of the system

How to characterize the frozen spins? (3)



Spin turbulence in spinor BECs    MT, Y. Aoki, K. Fujimoto, PRA88, 061601(R)(2013)

    t /τ  = 60〜360

    t /τ  = 4000〜4600

The growth of q means that 
the spins are frozen.



Starting with a helical structure Possible to observe the spin field.



“Wave turbulence (WT) can be 
generally defined as out-of-equilibrium 
statistical mechanics of random 
nonlinear waves.” 

Great wave by Japanese artist Hokusai 
Katsushika 

2-4. Bogoliubov wave turbulence in BECs
�

 Examples of WT
・Acoustic waves
・Surface gravity waves
・Kelvin waves on quantized vortices �
��etc.

No vortices �



Wave turbulence of Bogoliubov excitations in scalar BEC
             K. Fujimoto, M. Tsubota, Phys. Rev. A91, 053620 (2015)  ; arXiv:1502.03274 �

Why is this important in BECs?
・It is very difficult to observe 
the statistical laws of 
turbulence on vortices and 
superflow in cold atoms.
・It can be easier to observe 
those of density distributions. �



Previous study of the wave turbulence by the GP model
                  D. Proment, S. Nazarenko, M. Onorato, Phys. Rev. A80, 051603(R) (2009) �

The authors derived 
analytically�the power law

and confirmed it 
numerically. �

Cw / k�3/2



Weak excitation of the GP model�

1. Uniform system without the trapping potential
2. Weakly interacting Bogoliubov-wave �

Space�



BOGOLIUBOV-WAVE TURBULENCE IN BOSE-EINSTEIN . . . PHYSICAL REVIEW A 91, 053620 (2015)

fluctuation φ as

ψ = ψ0(1 + φ), (5)

where ψ0 is defined by

ψ0 = 1
Ld

∫
ψ dV. (6)

From Eqs. (5) and (6), we can derive
∫

φ dV = 0. (7)

Equations (6) and (7) mean that the condensate and the fluc-
tuation are the k = 0 and k ̸= 0 Fourier components of ψ̄(k),
respectively. In this paper, we consider a weak fluctuation from
a strong condensate, assuming the weak nonlinear condition
|φ| ≪ 1.

We substitute Eq. (5) into the GP equation (1), deriving
equations for ψ0 and φ̄(k) = F[φ] within second order of the
fluctuation:

i! ∂

∂t
ψ0 = gρ0ψ0

⎡

⎣1 +
∑

k1

(2|φ̄(k1)|2 + φ̄(k1)φ̄(−k1))

⎤

⎦ , (8)

i!ψ0
∂
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2m
ψ0φ̄(k)+gρ0ψ0

⎡
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k1 k2

φ̄∗(k1)φ̄(k2)δ(k+k1 − k2)

+
∑

k2 k3

φ̄(k2)φ̄(k3)δ(k − k2 − k3)

⎤

⎦ , (9)

where ρ0 is the condensate density |ψ0|2 and δ(·) is the Kronecker δ. Substituting Eq. (8) into Eq. (9), we obtain the following
equation for the fluctuation:

i! ∂

∂t
φ̄(k) = !2k2

2m
φ̄(k) + gρ0

⎡

⎣φ̄(k) + φ̄∗(−k) + 2
∑

k1 k2

φ̄∗(k1)φ̄(k2)δ(k + k1 − k2) +
∑

k2 k3

φ̄(k2)φ̄(k3)δ(k − k2 − k3)

⎤

⎦ . (10)

Therefore, we obtain Eqs. (8) and (10) for the condensate and the fluctuation dynamics within the weak nonlinear condition.
For application of weak WT theory, we rewrite Eq. (10) into the canonical form given by

i! ∂

∂t
φ̄(k) = δH

δφ̄∗(k)
, (11)

H = H2 + H3, (12)

H2 =
∑

k1

[(
!2k2

1

2m
+ gρ0

)
|φ̄(k1)|2 + gρ0

2
(φ̄(k1)φ̄(−k1) + φ̄∗(k1)φ̄∗(−k1))

]
, (13)

H3 = gρ0

∑

k1,k2,k3

δ(k1 − k2 − k3)(φ̄∗(k1)φ̄(k2)φ̄(k3) + φ̄(k1)φ̄∗(k2)φ̄∗(k3)). (14)

Here, note that the condensate function ψ0 has a time depen-
dence. In previous works [47–49], the condensate function ψ0
was assumed to be

√
ρ̄0exp(−iµt/!) with condensate density

ρ̄0 = N0/L
d , the k = 0 particle number N0 at the initial state,

and the chemical potential µ = gρ̄0. However, we keep the
second-order fluctuation terms in Eq. (8), so that the time
dependence of ψ0 is rather complicated. This term is very
important for calculating the Bogoliubov-wave distribution,
which is discussed in Sec. IV B.

B. Diagonalization of the Hamitonian and Bogoliubov-wave
distribution equation

To diagonalize the one-body Hamiltonian H2, we use the
Bogoliubov transformation [42] defined by

φ̄(k) = u(k)b(k) + v(k)b∗(−k), (15)

u(k) =

√
1
2

(
ϵ0(k) + gρ0

ϵb(k)
+ 1

)
, (16)

v(k) = −

√
1
2

(
ϵ0(k) + gρ0

ϵb(k)
− 1

)
, (17)

where b(k) is the canonical variable for Bogoliubov waves
(Bogoliubov-wave distribution) and ϵb(k) is the dispersion
relation for this wave defined by

ϵb(k) =
√

ϵ0(k)(ϵ0(k) + 2gρ0) (18)

with ϵ0(k) = !2k2/2m. Applying this transformation to the
Hamiltonian of Eqs. (13) and (14) leads to

H2 =
∑

k1

ϵb(k1)|b(k1)|2, (19)

053620-3

Application of weak wave turbulence (wwt) theory  �
Substituting                      to the GP equation yields � =  0(1 + �)



Wave turbulence of the GP model �

Numerical method：Pseudo-spectral method
Boundary condition：Periodic
Initial state：State generated by random 
number �



Wave turbulence of the GP model �

Early stage (t=0 - 700)� Late stage (t=1500 - 2200)�



Correlation function of wave function �
We derive 

�Cw / k�7/2

Time-development of the correlation function �

Dissipation is 
introduced here. �



Comparison between ours and the previous one �



Correlation function of density distribution �

2

In experiments, some groups have succeeded in gen-
erating turbulence in atomic BECs [38–41], where it
has been possible to obtain turbulence with many quan-
tized vortices. All these experimental studies focus on
quantized vortices, investigating the anomalous expan-
sion [38], vortex dynamics [39], annihilation of vortices
[41], and so on. However, the energy spectrum corre-
sponding to a two-point correlation function of the ve-
locity field has not yet been observed. This means that
Kolmogorov turbulence has not been observed. It would
be very important to observe Kolmogorov turbulence in
atomic BECs; however, observing the superfluid velocity
directly in turbulence is difficult, so we cannot confirm
whether Kolmogorov turbulence appears as of now.
To shed new light on the above problem, we focus on

weak wave turbulence (WT) with a strong condensate in
atomic BECs because the density profile of the BEC is
observable and thus plays an important role in observing
Kolmogorov turbulence. In this turbulence, Bogoliubov
waves are significant, so we call it Bogoliubov wave tur-
bulence in this paper.
Originally, in classical fluids, WT, which is turbulent

flow dominated by waves, has been studied [42, 43]. It
is much different from the usual hydrodynamic turbu-
lence (HT) because vortex structures are regarded as im-
portant in HT [1, 2]. There are weak and strong kinds
of WT, depending on whether the nonlinearity is weak
or strong. In weak WT, a constant transfer of energy
or wave action generates power law behaviors in corre-
lation functions, and Kolmogorov turbulence is known
to occur in various wave systems such as those involving
fluid surfaces (gravity and capillary waves) [44], magnetic
substances (spin waves) [45], and elastic media (acoustic
waves) [46].
We expect that it is possible to confirm Kolmogorov

turbulence in atomic BECs by the observation of the den-
sity profile in Bogolibov wave turbulence. In this pa-
per, by applying weak WT theory [42, 43] to the Gross-
Pitaevskii (GP) equation, we theoretically and numeri-
cally study the power law behaviors for three correlation
functions of a macroscopic wave function, density distri-
bution, and Bogoliubov wave distribution, discussing the
experimental possibility for observing Kolmogorov tur-
bulence by means of the density correlation function.
There are some previous works on Bogoliubov wave

turbulence in three-dimensional systems [47–49]. In pre-
vious studies [47, 48] the −3/2 power law in the Bogoli-
ubov wave energy spectrum was analytically derived, and
the equation of the fluctuation was derived with the as-
sumption that the condensate function has a constant
amplitude with a phase rotation induced by the chemical
potential. Subsequent work [49] has suggested the −3/2
power law in the correlation function for the macroscopic
wave function and a result consistent with this power law
was numerically obtained. However, unfortunately, the
approximation used in these derivations of the power law

neglects the second-order fluctuation term in the conden-
sate dynamics, and the numerical confirmation seems to
be insufficient.
We reconsider this Bogoliubov wave turbulence, ana-

lytically deriving the −7/2 power law in the correlation
function for the macroscopic wave function and numeri-
cally confirm this power law. We find that the condensate
dynamics induced by the fluctuation, which is neglected
in the previous studies, is important for Bogoliubov wave
turbulence. Furthermore, we focus on the density corre-
lation function, obtaining the −3/2 power law, and dis-
cuss the experimental possibility of this power law.
The article is organized as follows. Section II describes

the GP equation and the correlation functions for some
quantities. In Sec. III, we apply weak WT theory to the
GP equation, deriving the power laws for the correlation
functions. In Sec. IV, we show our numerical result for
this Boboliubov wave turbulence. Section V discusses
comparison between the previous results and ours, and
the observation of Kolmogorov turbulence. Finally, we
summarize our study in Sec. VI.

II. FORMULATION

We address a one-component BEC in a uniform system
at zero temperature. This system is well described by the
macroscopic wave function ψ obeying the GP equation
[19] given by

i!
∂

∂t
ψ = −

!2

2m
∇2ψ + g|ψ|2ψ (1)

with particle mass m and interaction coefficient g.
In this paper, we focus on spectra for the macroscopic

wave function ψ, the density distribution ρ = |ψ|2, and
the Bogoliubov wave distribution b, which correspond to
the two-point correlation functions of each variable. The
details of the Bogoliubov wave distribution are defined in
Sec. III B. The spectrum for the wave function is defined
by

Cw(k) =
1

△k

∑

k−△k/2<|k1|<k+△k/2

⟨|ψ̄(k1)|2⟩ (2)

with a resolution of △k = 2π/L in wave number space
and a system size L. The brackets indicate an ensemble
average. The function ψ̄(k) is the Fourier component
of the macroscopic wave function calculated by F [ψ(r)]
with [·] =

∫

·e−ik·rdV/Ld and spatial dimension d. In
the same way, we can define the spectra for the density
and Bogoliubov wave distributions as

Cd(k) =
1

△k

∑

k−△k/2<|k1|<k+△k/2

⟨|ρ̄(k)|2⟩, (3)

Cb(k) =
1

△k

∑

k−△k/2<|k1|<k+△k/2

⟨|b(k)|2⟩, (4)

Our theory:

�

Cd / k�3/2

This density distribution and 
the cascade can be observed 
experimentally. �



Summary
I discussed three kinds of quantum turbulence in atomic BECs.  

QT in single-component BECs      QT in two-component BECs

Spin turbulence in spinor BECs

 Bogoliubov wave turbulence in BECs
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Waves �
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